机器学习
Transformers 速查

Transformers是一个开源的自然语言处理(NLP)库,由Hugging Face开发和维护。它基于Transformer架构,提供了各种预训练模型和工具,用于解决各种NLP任务,如文本分类、问答、命名实体识别等。

Transformers 速查
机器学习导航地图

在学习的过程中,本站整理记录了一些机器学习相关的内容和文章,但看起来稍显杂乱,故此专门以机器学习的基本流程为主线,制作了本站机器学习相关的内容进行导航跳转。(持续更新)

机器学习导航地图
机器学习样本不平衡问题

样本不平衡问题是在生产过程中普遍存在的问题,在很多场景中样本的比例极度失衡,如果不进行处理,那么模型最终的效果可能不尽如人意。本篇收集整理了常用的样本平衡手段和方法。

机器学习样本不平衡问题
机器学习特征工程

数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。所以机器学习的大部分时间都是在处理数据的过程中,掌握好特征工程的思路和方法,有更高的概率能获得高质量数据。

机器学习特征工程
机器学习异常值处理

异常值可能是在数据采集、数据记录、数据提取等步骤中产生的,异常值的出现会对模型学习进行干扰,所以需要进行特殊处理。而在实际的生产环境中的异常值更是五花八门。

机器学习异常值处理
天猫复购预测-挑战赛——Top 0.5%

根据原数据构建了67个特征,尝试了多种算法和多次参数调优最终得分0.6925,记录过程分享一下。感觉数据指标还可以再优化,调参也还有进步空间,可以进一步优化提升。

天猫复购预测-挑战赛——Top 0.5%
Matplotlib & Seaborn 速查

数据分析可视化一直是短板,完全是因为不怎么用的缘故。把常用的方法整理一遍,以便用时查询。Seaborn基于 matplotlib 进一步封装。

Matplotlib & Seaborn 速查
AnJhon
AnJhon
但知行好事,莫要问前程
公告
type
Notice
status
Published
summary
slug
date
Jul 21, 2023
tags
category
password
icon
URL
Property
Aug 4, 2023 04:45 AM
🚧🚧🚧
网站施工中~
🚧🚧🚧
📮你好,欢迎来到我的博客 🧑🏻‍💻我是Anjhon,一个学习者 📃这里记录了我的学习生活笔记 📬欢迎留言交流